
CHAPTER 5

CENTRAL PROCESSING UNITS AND BUSES

INTRODUCTION

Digital computers have three major functional areas: central processing unit
(CPU), memory, and input/output (I/O). This applies whether the computer is
an 8-bit microprocessor or a 32-bit mainframe. Two other areas must be considered:
the system buses and the power supply. They, too, play a major role with the
functional areas of the computer. The buses are the means by which the CPU,
memory, and I/O communicate with each other. The power satisfies the dc voltage
requirements of the computer as you learned in chapter 4. Figure 5-1 shows a
typical block diagram of a computer. To complete the computer system, the
computer uses instructions to perform its operations. Through the man/machine
interfaces, you can control the computer’s operations to perform maintenance.

In this chapter, we discuss the CPU and buses. In chapter 6, we discuss memory.
In chapter 7, we discuss input/output and how the computer interfaces externally
with other computers, peripherals, and subsystems. In chapter 8, we examine
computer instructions and the man/machine interface.

You can find a computer’s functional areas and their operations, functional
descriptions, logic implementation, interpretation of logic, and functional
schematics in your computer’s technical maintenance or owner’s manuals. The
technical manuals and MRC documentation provide you information on the
required and/or recommended tools (standard and specialized), test documentation,
and test equipment to perform preventive maintenance. The technical manual or
owner’s manual documentation provides information to perform all aspects of
corrective maintenance. This includes test documentation and procedures; test
equipment; and tools for disassembly, assembly, and repair. Repair tools include

Figure 5-1.—Example of a typical block diagram of a computer.

5-1

standard and specialized tools. The specialized tools include solder and solderless
repair tools.

Become familiar with your computer’s publications and required
documentation before you jump into the computer’s hardware. This will enhance
your abilities as a technician. To perform this job effectively, you must understand
how a computer is organized internally. You must be able to recognize the
functional areas and what their capabilities are. You must understand how buses
function internally to transfer information internally.

The CPU is the computer’s brain. All the computational operations (logical
and arithmetic) and operational decisions are made in the CPU. The CPU controls
all computer operations. The organization of the central processor becomes
increasingly more complex as you move from a relatively simple microprocessor
to a mainframe computer. But basically CPU functions are the same whether you
are talking about a mainframe, a minicomputer, or a microcomputer.

The CPU comprises two interacting sections: the control section and the
arithmetic logic unit (ALU). The control section directs the sequence of CPU
operations, interprets the instructions, and provides the timing and control signals
to carry out the instructions. The arithmetic logic unit implements arithmetic and/or
logical operations required by these instructions. The CPU generally consists of
timing circuits, registers, translators, selectors, comparators, adders, and
subtractors.

After completing this chapter, you should be able to:

Recognize the internal parts and functions of a computer

Describe how a control section of a CPU operates

Describe how the functions of the arithmetic logic unit (ALU) are
performed

Describe the types of buses and how they operate

TOPIC 1—CONTROL SECTION

Like a traffic director, the control section decides
when to start and stop (control and timing), what to do
(program instructions), where to keep information
(memory), and whom to communicate with (I/O). It
controls the flow of all data entering and leaving the
computer, from the beginning to the end of operations.
It does this by communicating or interfacing with the
ALU, memory, and I/O areas (fig. 5-2). It is also
capable of shutting down the computer when the power
supply detects abnormal conditions. In some
computers it sends a signal to the control section to
initiate computer shut-down.

Specifically the control section manages the
operations of the CPU, be it a single chip
microprocessor or a full-size mainframe. The control
section of the CPU provides the computer with the
ability to function under program control. Depending
on the design of the computer, the CPU can also have
the capability to function under manual control through
man/machine interfacing. The man/machine interface
operating modes, the operations, and the functions,
along with the control section, will allow you to control
the operations and perform maintenance on the
computer(s). NEETS Module 13, Introduction to
Number Systems and Logic Circuits, and chapter 4 of
this volume provide an excellent review of some of the
circuits used in the control section.

5-2

Figure 5-2.—Representative block diagram showing the relationship of the control section to the other functional areas of a
computer.

The control section consists of several basic
logically defined areas. These logically defined areas
work closely with each other. They are the basis for the
operations of the control section in most computers.
They include:

l Timing

l Instruction and control

l Addressing

l Interrupts

l Control memory

l Cache memory

. Read-only memory (ROM)

TIMING

Timing in a computer regulates the flow of signals
that control the operation of the computer. Without
timing, events in a computer would not take place. The
computer’s operations rely on both synchronous and
asynchronous operations. Synchronous operations
means that certain events happen at regularly timed
intervals. An example of this is the computer’s master
clock. Asynchronous means that the completion of one
event triggers the next event. An example of this is the
execution of instructions located sequentially in
memory. After an instruction is executed, the next

instruction cannot be executed until the program
counter has been incremented to fetch it. Timing gets
the computer going. Timing circuits are used
throughout the computer, as you will see when we
discuss each of the functional areas.

Not all computers rely on a sophisticated timing
system. Some timing systems are very simplistic and
rely only on the computer’s master clock and one or two
other timing signals derived from the master clock to
start and stop events. Still other more sophisticated
computers rely on the master clock and timing circuits
in each of the functional areas to start and stop
operations.

Some of the more common timing circuits you will
encounter include the following:

Master clock

Main timing chain

Main timing signals

Timing sequences

Sequence enables and control

Real-time clock

Monitor clock

Programmable interval timers

Arithmetic timing

5-3

Figure 5-3 is an example block diagram of timing
circuitry used in a computer’s CPU.

Master Clock

From our discussion in chapter 4, you learned that
the master clock can be either a single- or multiple phase
master clock. A single-phase master clock can then be
used to trigger a single-shot multivibrator that is used
throughout the computer to enable and disable circuits
in whatever sequence is necessary to properly execute
the computer’s operations. Multiple-phase master
clocks can use a pulse generator or delay line oscillator
to generate two or more clock phases. A delay line
oscillator will generate two basic clock phases and any
additional phases are derived from taps on the delay line
oscillator.

Whether a pulse generator or delay line oscillator
is used, they generate multiple phases sometimes
referred to as odd θ1 (CP1) and even phases θ2 (CP0)
or lettered phases (θΑ, θΒ, or (θΒΑ). These phases from

the master clock are then used to initiate the main timing
chain flip-flops. The master clock in a computer can be
suspended under certain conditions; the way it can
happen varies with the type of computer. With a
microcomputer, it is usually done by removing power
to the computer. With a larger mainframe or
minicomputer, you will need to remove the power
works, too. However, certain types of HOLDS,
MASTER CLEARS, and operating MODES selected
at a console can also suspend master clock oscillations.
Refer to your computer’s technical manual for details.
Refer again to figure 5-3 for an example.

Main Timing Chain

The main timing chain consists of flip-flops
arranged in a ring counter. It is used to count master
clock phases. The flip-flops used in the main timing
can be set and cleared by the two basic master clock
phases and any additional master clock phases. The
design of the computer determines how this is
accomplished. The main timing (MT) chain is often

Figure 5-3.—Example block diagram of timing circuitry used in a computer’s CPU.

5-4

designed so that the odd flip-flops (MT11, MT21, and
so on) are set and cleared by odd phases or lettered
phases and the even flip-flops (MT12, MT22, and so
on) are set and cleared by the even or lettered phases.
The timing chain uses the set and/or clear sides of the
flip-flops to enable and disable circuits throughout the
computer and to generate main timing signals (phases)
such as MT0l or MT02. Main timing signals can be
used to generate other commands, such as starting
arithmetic timing for computers with more
sophisticated mathematical operations.

Main Timing Signals

Main timing signals are used in the CPU to enable
and disable circuits or generate command enables that
are used for control or arithmetic operations. The
majority of data transfers affecting the registers and
associated circuitry in the control section derive their
enables from main timing signals. An example is a
main timing signal used to generate a command enable
such as sending data from one register to another.

Timing Sequences

Timing sequences are used to issue a series of
commands to perform a particular instruction or
operation. The minimum number of sequences per
instruction or operation is determined by the
requirements of the computer. An example is the
command to enable an instruction sequence, which is
used to acquire the instruction for translation.

Some computers have separate control sections for
each functional area. In that case, each function will
operate independently of the others. That is, a computer
that uses a controller for I/O operations has its own
master clock/main timing chain/main timing signals,
which are independent of the CPU’s master clock/main
timing chain/main timing signals.

Sequence Enables and Control

Circuitry to control the sequence enables and to
generate commands depends upon the type of
instruction and method of addressing.

Real-Time Clock (RTC)

The real-time clock (RTC) is used to keep track of
units of real time. The RTC can be loaded, read,
enabled, and disabled by machine instruction. The
register itself is incremented at a rate determined by the

RTC oscillator circuit setting or the external RTC input
frequency.

The RTC is only incremented when the CPU is
running. It allows the computer, through machine
instructions, to keep track of the passage of time using
readily processed units of time. To prevent register
overflow from causing errors in the timekeeping
process, most RTCs generate register-overflow
interrupts when the register contents increment around
to zero (change from all ONEs to all ZEROs). The RTC
can be enabled and disabled, and updated internally or
externally.

Monitor Clock

The monitor clock register is used to keep track of
time intervals by counting down from its loaded value
to zero. The monitor clock can be loaded, enabled, or
disabled by machine instruction. The monitor clock is
decremented in the same manner as the RTC is
incremented and only when the computer is running.
When the enabled monitor clock reaches zero, a
monitor clock interrupt is generated. A monitor clock
interrupt usually indicates that a designated computer
operation timed out before it was properly completed.
This usually occurs when memory or I/O cannot honor
a request for reasons of priority or hardware failure.
There must be a time limit established to release the
hold on CPU main timing or an indefinite period of
inaction could occur. By using the monitor clock
register to keep track, a time limit is imposed.

Programmable Interval Timers

For those microprocessors that do not have an RTC
or monitor clock registers, there is an additional logic
chip available called a programmable interval timer.
This chip provides up to three counters or count
registers that are software controlled. These registers
can perform the RTC, the monitor clock, or any other
time interval measurements.

The timer communicates with the CPU over the
control and data buses. The count registers are
independent of each other, addressable (0, 1, or 2), and
can be loaded with count values or have their current
values read and sent to the CPU. These counters are
decrementing or down counters only. They operate off
of separate clock signal inputs so they can be configured
to count at the same or different clock rates. They can
also be programmed to interrupt the CPU when the
count in a selected register reaches zero.

5-5

Arithmetic Timing

Arithmetic timing is initiated by a command from
the CPU’s main timing chain. How far arithmetic
timing advances is dependent upon the specific
instruction.

INSTRUCTION AND CONTROL

The instruction execution and control portion of the
control section includes the combinational and
sequential circuits that make up the decision-making
and memory-type functions. First we discuss some of
the functions, operations, operand addressing, and
operating levels. We include those items most common
in all computers and any that are unique to a specific
type of computer.

Instruction and Control Functions

In chapter 4 we discussed the circuits that are used
by computers. In this topic we discuss some of the more
common functions used by these decision-making and
memory-type circuits to execute instruction and control
operations. Some of the more common functions of the
circuits in this area include the accumulators, index
registers, instruction register, program counter, and
status indicating registers.

The registers (memory-type functions) work with
decision-making functions (primarily data routing
circuits) to channel the data inside the computer. Their
functions are many in the CPU; therefore, we do not go
into detail. Refer back to chapter 4 for their basic
functions. These data routing circuits are capable of
providing input to the registers and/or using their
outputs to route data elsewhere in the computer.
Among some of the data routing circuits included in the
CPU’s control section are the following:

. Adders

l Command signals (enables)

l Comparators

l Demultiplexers

l Selectors

l Translators

These are by no means all the functions contained
in all computers, but they represent a general overview
of the common functions needed to execute instructions
and control operations.

Let’s look at the more common functions of the
memory-type circuits that the CPU uses.

ACCUMULATORS.— Located in the CPU are a
number of general-purpose registers called
accumulators that are used to temporarily store data or
memory addresses. They are generally the same length
(number of bits) as a memory word. There are typically
8-, 16-, or 32-bit accumulators, numbered from 0,
depending on the size and type of computer or
microprocessor.

These registers are accessible to a computer
programmer. In other words a programmer can control,
by machine instruction(s), what data is placed in these
registers and what manipulations take place on the data.
In addition to the operation (op) code, instructions
contain one or two multibit fields that specifically
identify the accumulator register to be operated upon.

In older computers each bit position’s flip-flop
circuit had indicator lamps to indicate the contents of
the register to the computer programmer/technician. In
the newer computers, the majority of registers are
noting more than memory addresses in local storage
areas. The register contents, however, are still
accessible to the technician through the computer’s
man/machine interface.

INDEX REGISTERS.— Most CPUs contain a
number of index registers (8-, 16-, or 32-bit). Index
registers are addressable registers that are used for two
purposes: address modification and counting. The
value contained in a particular index register can be
used to modify the operand address of a machine
instruction without changing the instruction itself in
memory. In this way a single instruction can be used to
specify a large number of operands, indirectly.

The count in an index register can also be modified
by fixed values (incremented or decremented) to
control program repetitions or iterations.

INSTRUCTION REGISTER.— To translate and
execute the instructions, the outputs of the instruction
register are fed to logic circuits (selectors and/or
translators) that are used to translate the binary codes
into commands for the CPU to execute (fig. 5-4).

PROGRAM COUNTER.— The program counter
controls the selection of machine instructions. It holds
the address of the next instruction to be executed.
Adders and registers are used to perform this function.

5-6

Figure 5-4—Example of instruction translation and execution circuitry.

STATUS INDICATING REGISTERS.— The
CPU must have some way to monitor the status of the
computer’s internal operations. The name of these
register or registers may differ between computers, but
the general functions performed are the same. Some of
the most common names are as follows:

l Condition code

l Status and control

l Program status

l Active status

l Flag

These registers use the condition of individual
bits in the register to indicate the status of opera-
tions in the computer (fig. 5-5). Within the register,
individual and sometimes groups of bits (2 or 3
bits) are hardwired to the computer logic. The 1 or 0
value in each bit position indicates the status of a
particular activity or special function of the com-
puter.

The specific activities monitored by these registers
varies between computers, but consist of the following
general areas: arithmetic operation or comparison
results (carry, overflow, zero, negative, and so forth)

Figure 5-5.—Example of a status register; indication of a
program fault.

5-7

(fig. 5-6), a variety of interrupt conditions, task or
executive state status, and hardware status (memory
lockout, hardware faults, and so forth). These registers
are often used with instructions where branching
conditions are used to change the sequence of
instruction execution.

The status indicating registers’ contents can be
sensed, loaded with new data bits, or stored into
memory by machine instruction. Many machine
instructions, particularly branching instructions, are
designed to sense the condition of specified register bits
to determine how the instruction itself is to be executed.
Other instructions are designed to modify the contents
of the register(s) to change state (executive or task) or
to enable/disable classes of interrupts; this is

accomplished by indexing. The contents of the status
indicating register(s) is/are normally stored into
memory as part of the interrupt processing operation.

Instruction and Control Operations

The control portion of the CPU for computers is
responsible for fetching, translating, and executing all
instructions (fig. 5-7). The CPU calls up or reads the
instructions one at a time either from consecutive
addresses or as dictated by the program from main
memory or read-only memory (ROM). The general
process of execution of a machine instruction can be
divided into four major parts: fetch (read) the
instruction, update the program counter or equivalent,
translate the instruction, and execute the instruction
specified by the function or op code.

Figure 5-6.—Example of an arithmetic detecting circuit used to indicate a subtraction overflow condition.

5-8

Figure 5-7.—Basic operation of a fetch and decode (translate)
of an instruction in a CPU.

FETCH (READ) THE INSTRUCTION.— The
instruction is fetched by reading the instruction from the
memory (main memory or ROM) address specified by
the contents of the program counter or equivalent. The
instruction is temporarily stored in an instruction
register, while the program counter is being
incremented to the next instruction’s address.

UPDATE THE PROGRAM COUNTER.— The
program counter controls the selection of the
instruction. The program counter contains the memory
address of the next machine instruction to be executed.
Most of the time machine instructions are executed
sequentially. The program counter is incremented to
the address of the next instruction. Usually an index
adder is used to perform this function. When an
instruction is completed, the new count in the program
counter points to the next instruction to be fetched from
memory and executed in turn.

The memory word size of the computer has an
effect on the value that is used to increment the program
counter. For those computers in which the majority of
instructions are contained in one memory word, the
program counter is incremented by one (1) for each
instruction. For computers with smaller memory words
(8-bits), instructions are often assembled from several
sequential bytes and the program counter must be
incremented by a value that will point to the first byte
of the next instruction to ensure correct translation of
that instruction’s operation code.

There are times, however, when a change in the
sequence of instruction execution, called branching or
jumping, is required. Branching or jumping can be
accomplished through the man/machine interface by
using switches on the controlling consoles. Examples

Figure 5-8.—Block diagram of an operation to determine an
absolute address.

are the stop and jump switches. In these cases instead
of being incremented, the address in the program
counter is changed to anew address to start sequential
execution of a different section of machine instructions
in the program. Branching or jumping can also be
accomplished through program instructions.

In some computers, the program counter contains
the relative or offset address of the instruction being
executed. An additional set of registers called base
registers are used to provide the base address of a block
of memory. The program counter value must be added
to a selected base register value (fig. 5-8) to determine
the absolute address of the next sequential instruction.

TRANSLATE THE INSTRUCTION.— An
instruction register holds the machine instruction while
it is translated by other CPU logic (translators). The binary
data that makes up the instruction op code determines
the operation the CPU is to perform. The derived func-
tion codes are then sent to other parts of the control section
of the CPU to execute the instruction. The translation
of the instruction determines which command
sequences will be used to execute the instruction.

EXECUTE THE INSTRUCTION.— Execution
of the instruction will generate command enables that
are used throughout the computer to transfer data
between registers and other parts of the computer. The
logic consists of gating and amplifying circuits, which
produce or inhibit control signals appropriate to the
combination of conditions at their inputs. The
controlling conditions are supplied by the timing
circuits (master clock, main timing chains, and timing
sequences) and function code translator and associated
circuitry (selectors, registers, adders, and comparators).

An execution technique used in newer
microprocessors contains a logic assembly called an
instruction queue. It is used to speed up computer
operations and increase efficiency. The instruction
queue allows the microprocessor to fetch a number of
sequential instructions or instruction bytes and hold
them in a queue for execution by the execution unit of
the microprocessor. The instructions are fetched by the
bus when the memory section is available for access and
in some cases pretranslated while the processor is

5-9

executing other instructions. Instructions or instruction
bytes are added to the rear of the queue until the queue
is full. When the execution unit has completed an
instruction, it simply takes the next instruction or
several instruction bytes from the front of the queue.

Instruction Operation Levels

The CPU executes instructions at two levels or
states: the executive state and the task state. Data bits
in the status indicating registers(s) are used to select the
desired active state.

● Executive state —Executive state, also called inter-
rupt state, instructions are designed to process what are
known as executive functions (primarily I/O and inter-
rupt processing) for multiprogramming operations. These
functions are included in the operating system programs.
There may be as many as four separate executive states
in newer computers, one for each class of interrupts.

. Task state —Task state instructions execute what
are called application functions. These functions
actually perform the work, such as solving the fire
control problem in a CDS/NTDS platform or
computing a sonobuoy pattern on a TSC platform.

The majority of machine instructions can be
executed in either the task or executive states. There
are a limited number of instructions that can be executed
only in the executive states. An example is privileged
instructions that are part of interrupts, which you will
learn more about later in this topic.

Those computers that have task and executive states
have at least one set of addressable registers for each
state. These addressable register types (accumulators,
index registers, base registers, and the like) are only
accessible by machine instruction when the computer
is in the applicable state. The register sets are enabled
and disabled automatically as the computer changes
states. In computers with four executive states, there
are five sets of addressable registers, one for the task
state and one for each executive state.

INSTRUCTION OPERAND ADDRESSING

Addressing is the process of locating the operand
(specific information) for a given operation. It is
similar to the process of obtaining your address so that
information can be sent to you. Once the computer
knows where to obtain the location of the operand, the
instruction can be carried out. If for instance, the
operand is in memory, the addressing technique
determines how to obtain the memory address of the
operand and how to use this address to locate the
operand and fetch it. If the operand is in one of the

CPU’s registers, addressing is the means by which the
instruction specifies the selected register and the
operand is fetched. Because the length of instructions
and the number of bits per memory cell vary between
types of instructions and computers, there is a variety
of ways the operand may be obtained.

INTERRUPTS

Up to this point we have covered timing and instruc-
tion control and execution. The following information
is designed to tie together the overall operation of the
computer through the study of interrupts and interrupt
processing. We first cover the definition of an interrupt
and the types and classifications of interrupts you will
encounter in computer systems. Then, we cover how
computers handle interrupts and what happens within
the computer hardware and software.

An interrupt is defined as a break in the normal flow
of operation of a computer caused by an interrupt
signal. The break occurs in such a way that the
operation can be resumed from the point of the break at
a later time with exactly the same conditions prevailing.

Interrupts are a method of diverting the attention of
the computer from whatever process or program it is
performing to the special condition or event that caused
the interrupt signal. Interrupts allow the computer to
respond to high priority demands and still be able to
perform normal or lower priority processing. When the
condition that caused the interrupt signal to occur has
been addressed or processed, the computer’s attention
can be returned to the process or program it was
executing before the interrupt with the exact same
conditions prevailing. Interrupts can occur either
asynchronously or synchronously within the CPU
program. The handling of a synchronous interrupt
occurs with the actual event that caused the interrupt;
whereas the handling of an asynchronous interrupt may
occur much later in time than the actual event that
caused the interrupt. We discuss the classification,
types (micro, mini, and mainframe computers),
priorities, codes, and handling processes of interrupts.

Classifications of Interrupts

There are two major classifications of interrupts:
internal interrupts and external interrupts.

. Internal interrupts —Internal interrupts occur as
a result of actions or conditions within the sections of
the computer (CPU, IOCs, or memory). Internal
interrupts tend to indicate the completion or termination
of I/O operations, or the ending of defined time periods;
or they signal some type of error.

5-10

. External interrupts —External interrupts are
received from external peripheral devices. They are
used to synchronize the execution of computer
programs to the readiness of the peripheral device to
transmit or receive data. They are also used to identify
peripheral equipment problems/errors to the computer.

Now let’s look at how interrupts work in each major
type of computer.

MICROCOMPUTER INTERRUPT TYPES.—
The microcomputer receives both internal and external
interrupts. Internal interrupts are received from the
real-time clock, system clock, and other conditions that
effect the operation of the microprocessor. External
interrupts are received from disk drives, CD-ROM
drives, sound boards, etc. These are classified as
external interrupts, even though the devices are
physically installed in the microcomputer case.
Microcomputer interrupts fall into two basic categories:
maskable and non-maskable. The CPU of the
microcomputer has two interrupt signal lines, one for
each category of interrupt.

External hardware interrupts are maskable inter-
rupts. The interrupt request signal indicates the pres-
ence of one or more of these interrupts. The specific
interrupt type is defined by accompanying interrupt code
words. The interrupt code and a ROM or program-
mable ROM (PROM) lookup table are used to direct the

processor to the address of the interrupt processor pro-
gram for the particular interrupt type. Maskable inter-
rupts can be masked out or locked out for short periods
of time by the software to allow the CPU to perform
critical operations. The programmer is responsible for
ensuring that interrupts are managed in a timely manner.

Nonmaskable interrupts cannot be masked out.
They are used for conditions that require immediate
attention by the microcomputer. Examples include
interrupts from the internal hard disks, modems, fax
cards, and sometimes a power out-of-tolerance
condition. If this feature is available, a power out-of-
tolerance condition will force the microcomputer to
execute its save data program.

The interrupt request (IRQ) line provides the
input signal path for all interrupts. If the interrupt
enable bit in the status indicating register is set, the
interrupt is processed at the end of the current
instruction cycle. If the interrupt enable bit is clear, the
interrupt signal is ignored by the microcomputer and
the next sequential instruction is executed.

Each hardware interrupt has a unique IRQ channel
assigned. Some of these channels are preassigned and
cannot be changed, while several are available for the
user to install additional hardware into the
microcomputer. Table 5-1 lists the hardware interrupt
channels used by most microcomputers. Note that in

Table 5-1.—Common IRQ Assignments for Microcomputers

5-11

Table 5-1, IRQ5 is assigned to parallel port 2; this port
is generally available in most microcomputers and is
commonly used by most sound cards. When
microprocessors expanded from 8-bit to 16-bit proces-
sors, the amount of hardware supported also grew. This
required the addition of more IRQ channels. Manufac-
turers added an additional 8-channel processor and cas-
caded them by connecting IRQ2 on processor to IRQ9.

The latest development in microcomputer technol-
ogy concerning interrupt processing is the Plug-n-Play
feature. A true plug and play system requires three
components to work together; the hardware, the BIOS,
and the operating system. During the power-on cycle
of computers that are Plug-n-Play capable, the firmware
contained in the basic input/output system (BIOS)
interrogates each component in the system to determine
the type of board, IRQ channel requirements, DMA
channel requirements, and ROM requirements. The
board responds with the specifications it requires, then
the BIOS assigns IRQs, DMA, ROM resources, etc., to
all the boards, ensuring that there are no conflicts. The
functions of the BIOS are covered in detail later in this
chapter. This process is repeated every time the
computer is turned on. Controllers that are not
Plug-n-Play compatible can be installed by using the
standard configuration program and locking the
resource to those unique settings.

MINI AND MAINFRAME INTERRUPT
TYPES.— Within larger computers, interrupts are
divided into a number of separate classes. Multiple
classes of interrupts are needed because there are
several levels of processing within these computers and
many different types of operations and conditions that
have to be monitored. Some operations and conditions
are more important than others.

There are generally three or four classes of
interrupts, which we designate class I, II, III, and IV.
Interrupts are prioritized by these classes and by the
types of interrupts within a class. Class I interrupts are
the highest priority or most important interrupt class as
far as the computer is concerned. The other classes (II,
III, and IV) are in turn lower in priority than Class I.

Class I Interrupts.— Class I interrupts function
during all computer operations; in other words, they
will interrupt any computer program or instruction.
These are the highest priority interrupts. Known as
fault and hardware or hardware error interrupts,
these interrupts indicate there is a serious hardware
problem with the computer, or more accurately within
the CPU or its communication buses. The following are
some of the more common class I interrupts:

Power fault or power tolerance

Memory parity errors

Memory resume errors

Bus communication errors

The most common class I interrupt is the power
fault or power tolerance interrupt. This interrupt
indicates that the power supply voltage has fallen below
a certain tolerance level and that the computer should
execute its power failure processing routines before
there is a total loss of power. The actual routines will
vary from computer to computer based on the device’s
automatic restart and backup storage power
capabilities.

Class II Interrupts.— Class II interrupts are used
to identify faults and errors within the CPU or IOC
instruction execution and program timing processes.
These software interrupts can indicate the following
conditions:

Execution of illegal instruction operation (op)
codes (CPU or IOC instructions)

Execution of privileged instructions in the task
mode

Floating-point math underflow or overflow
conditions

Real-time clock (RTC) overflow

Monitor clock timeouts

Class III Interrupts.— Class III interrupts are
primarily I/O operation interrupts. They indicate
such functions as the following:

External interrupts

Input or output chain interrupts

Intercomputer timeouts

Input data ready or output data ready interrupts

Class IV Interrupts.— In some computers, there is
a class IV interrupt that indicates executive state
entrance. In others, the executive state entrance is a
class II interrupt. A limited number of instructions can
be executed only in the executive states. Among them
are privileged instructions.

MINI AND MAINFRAME INTERRUPT
LOCKOUT OF CLASS I, II, III, AND IV
TYPES.— Computers that operate with different levels
of interrupts are equipped with the logic circuitry to

5-12

lockout or disarm classes of interrupts and often
specific interrupts within a class. Lower levels of
interrupts (class II through IV) can be locked out
(disarmed) or enabled (armed) by machine instruction.
The terms prevent/allow are also used in place of
enable/disable with some computers. The lower
priority interrupts are locked out so that they do not
interfere with higher level computer operations
(executive state or class I interrupt processing) while
they are in progress.

There are usually several specific class I interrupts
that cannot be locked out by instruction. These
interrupts would normally include any of the following:

l Power fault

l CPU instruction fault

l IOC instruction fault interrupts

INTERRUPTS AND INTERRUPT CODES.—
Interrupt signals, as a rule, cause the computer to
reference a freed address in memory and execute the
subroutine (a series of instructions) identified by the
contents of the address. The interrupt signal only
identifies the class of interrupt. Multiple interrupt types
within a class are usually defined by an accompanying
interrupt code or interrupt code word.

In older and smaller computers, the interrupt code
parallels the interrupt signal. In other words both the
interrupt signal (class I, II, or 111) and identifying code

are received and processed by the CPU at the same time.
Since the interrupt processor tends to lockout interrupts
of the same class, this process tends to hold up or even
lose interrupts of the same or lower priority classes that
occur while the first interrupt is being processed.

Newer computers retain multiple interrupt codes of
the same class in an interrupt stack or interrupt
queue, usually contained in the I/O section. There
usually is a stack or queue for each interrupt class (I, II,
or III). Interrupt queues store their codes in first-in,
first-out (FIFO) order.

The interrupt signal would indicate to the CPU the
presence of at least one interrupt of the particular class.
The stack and queue arrangements allow the CPU to
sample the interrupt codes at its convenience. As each
code is processed, it is removed from the stack or queue
until the stack or queue is empty. The interrupt signal
would only drop if the stack or queue becomes empty.
New interrupt codes would simply be added to the stack
or queue as they occur. An empty stack or queue would
generate an interrupt signal when the first new code is
added to the stack or queue by the I/O circuits.

INTERRUPT HANDLING PROCESS.— CPUs
follow a specific sequence of events when processing
an interrupt. Remember interrupt processing has
priority over normal program execution. We discuss
the general interrupt handling process in order of its
sequence. Figure 5-9 illustrates the general sequence

Figure 5-9.—General sequence of an interrupt response.

5-13

of an interrupt response by the CPU. Refer to this figure
as we describe the process.

Terminate Current Program Execution.—
Computers are not designed to instantly stop all current
operations when an interrupt signal is received. They
do not halt the current operation until the machine
instruction (macro or micro) being processed has been
completed. Interrupt terminations effectively occur
between instructions. There is usually a check for
interrupt signals at the end of the current instruction
execution cycle. In our example, an interrupt is
received during the execution of the third instruction.

At this time, the program counter has been
incremented to the next instruction’s address, and all
register operations are complete from the execution of
the instruction in the instruction register, the third
instruction. The program counter reflects the address
of the next instruction in the current program and the
register contents are stable. It is at this point that the
interrupt process will be initiated.

Lock Out All Interrupts.— The first event that
takes place in interrupt processing is the locking out of
all new interrupts. This is done to protect the integrity
of the process that ensures returning to the same
conditions after processing the interrupt. There are a
few machine instructions and other processes that must
be performed to save the current register data so that it
can be restored to the preinterrupt conditions. The
interrupt lockout prevents any new interrupts from
interrupting this process and potentially losing data or
even worse losing track of where the computer was in
the interrupted program.

Store Program and Register Data.— Once all
interrupts have been locked out, the computer can store
the current process’s register data in the applicable
memory locations. Each class of interrupt is assigned
a block of memory locations to store at least the
following register contents: program counter and status
register(s).

The program counter data will allow the interrupted
process to be restarted as if the next instruction is being
executed as in normal operation. The status register
contents are saved to be able to reinstate the computer’s
operational status at the time of the interrupt once the
interrupt has been processed. In our example, the data
from the three previously executed instructions is stored
in memory. The address of the fourth instruction of the
current program is also saved.

In newer computers, the accumulator, index, and
other addressable registers do not require saving since

there is a separate register set for each task and
executive state. When a new state is entered, the
instructions being executed can only address or modify
the registers assigned to that state. Any other task or
executive state registers are disabled and their contents
are protected until the appropriate state is reentered.

Retrieve Interrupt Processor Data.— After the
register data is saved, the new executive state’s registers
are loaded with the interrupt processor program data.
The program counter is loaded with the starting address
of the processor program (instruction number 1 of the
interrupt routine), the status register(s) is/are loaded
with the operational status data required by the
program. The interrupt processor data for each class of
interrupts is stored in an assigned block of memory cells
where it can be retrieved for each interrupt.

Enter Executive State and Enable Desired
Interrupts. — The loading of the status register(s)
allows the computer to enter the required executive state
and enable the interrupts that can in turn interrupt the
interrupt processor. The data bits loaded into the status
register(s) effectively change the executive state class
(I, II, III, or IV), and enable the active status register set.

The new status register bits also set or clear
interrupt lockouts to enable or disable specific interrupt
classes. The new data in the status register(s) would
only enable higher priority interrupts than the interrupt
being processed.

Execute Interrupt Processor Program.— The
address in the active state’s program counter will now
allow for the execution of the interrupt processor
program, instruction number 1 of the interrupt routine.
The interrupt processor samples the interrupt code
words and determines the appropriate action in
response to the interrupt.

Return to Original Process.— Upon completion
of the interrupt processor routine, the active state will
be switched to the next lower state, either task state or
a lower priority executive state, and the program
counter and status register(s) for that state will be
reloaded with the saved data. The program counter can
then call up the next sequential instruction (instruction
number 4 of the current program) in the interrupted
process and the program will continue as if no interrupt
had occurred. The computer will normally return to the
task state program only when all executive state
procedures have been completed.

5-14

CONTROL MEMORY

Control memory is a random access memory
(RAM) consisting of addressable storage registers. It is
primarily used in mini and mainframe computers as a
temporary storage for data. Access to control memory
data requires less time than to main memory; this speeds
up CPU operation by reducing the number of memory
references for data storage and retrieval. Access is
performed as part of a control section sequence while
the master clock oscillator is running.

The control memory addresses are divided into two
groups: a task mode and an executive (interrupt) mode.
Addressing words stored in control memory is via the
address select logic for each of the register groups.
There can be up to five register groups in control
memory. These groups select a register for fetching
data for programmed CPU operation or for maintenance
console or equivalent display or storage of data via a
maintenance console or equivalent. During
programmed CPU operations, these registers are
accessed directly by the CPU logic. Data routing
circuits are used by control memory to interconnect the
registers used in control memory.

Some of the registers contained in a control
memory that operate in the task and executive modes
include the following:

Accumulators

Indexes

Monitor clock status indicating registers

Interrupt data registers

CACHE MEMORY

Cache memory is a small, high-speed RAM buffer
located between the CPU and main memory. Cache
memory buffers or holds a copy of the instructions
(instruction cache) or data (operand or data cache)
currently being used by the CPU. The instructions and
data are copies of those in main memory.

Cache memory provides two benefits. One, the
average access time for CPU’s memory requests is
reduced, increasing the CPU’s speed by providing rapid
access to currently used instructions and data. Two, the
CPU’s use of the available memory bandwidth is
reduced. This allows other devices on the system bus
to use the memory without interfering with the CPU.
Therefore, cache memory is used to speed up the flow

of instructions and data into the CPU from main
memory.

This cache function is important because the main
memory cycle time is typically slower than the CPU
clocking rates. To accomplish this rapid data transfer,
cache memories are usually built from the faster
bipolar RAM devices rather than the slower
metal-oxide-semiconductor (MOS) RAM devices.
The RAMs used for cache memory may be either
dynamic RAMs (DRAMs) or static RAMs (SRAMs).
Cache memories are not part of the memory section and
they are transparent to programmers (i.e., not accessible
by machine instruction). Their size varies with the type
of computer; usually they are no more than 64K.

PROPERTIES OF CACHE MEMORY.— All
caches share the following properties:

. A buffered memory or cache memory consists of
a small high-speed memory with main memory
information. This information may be addresses, data,
or instructions. The speed of the small memory is
usually on the order of one magnitude faster than main
memory, and its capacity is typically one or two orders
of magnitude less than main memory.

l A cache memory system requires an identifier
or tag store to indicate which entries of main memory
have been copied into it. Such an area is usually
referred to as the directory or tag store.

l A cache memory requires a logical network and
method of replacing old entries.

. A cache memory uses timing and control.

CACHE PROCESS.— The cache process takes
place when a CPU with a cache initiates a memory
reference. The address of the needed item is generated
and the cache is searched. The method of search
depends on the type of cache mapping used by the
computer system. We can generalize the cache process
into three areas as follows:

l Searches —Reads from the cache directory with
a hit indicating that the data from the requested address
is present, while a miss indicates that the data is not
present.

l Updates —Writes to the cache data as well as to
the directories with new informationo

l Invalidates —Writes only to the directories; this
effectively removes an address that previously resided
in cache.

5-15

If the particular address is found in the cache, the
block of data is sent to the CPU, and the CPU goes about
its operation until it requires something else from
memory. When the CPU finds what it needs in the
cache, a hit has occurred. When the address requested
by the CPU is not in the cache, a miss has occurred and
the required address along with its block of data is
brought into the cache according to how it is mapped.

Cache processing in some computers is divided into
two sections: main cache and eavesdrop cache. Main
cache is initiated by the CPU within. Eavesdrop is done
when a write to memory is performed by another
requestor (other CPU or IOC). Eavesdrop searches
have no impact on CPU performances.

CACHE MAPPING TECHNIQUES.— Cache
mapping is the method by which the contents of main
memory are brought into the cache and referenced by
the CPU. The mapping method used directly affects the
performance of the entire computer system.

. Direct mapping —Main memory locations can
only be copied into one location in the cache. This is
accomplished by dividing main memory into pages that
correspond in size with the cache (fig. 5- 10).

l Fully associative mapping —Fully associative
cache mapping is the most complex, but it is most
flexible with regards to where data can reside. A newly
read block of main memory can be placed anywhere in
a fully associative cache. If the cache is full, a

Figure 5-10.—Example of direct mapping used in cache
memory.

Figure 5-11.—Example of fully associated mapping used in
cache memory.

replacement algorithm is used to determine which block
in the cache gets replaced by the new data (fig. 5-11).

● Set associative mapping —Set associative cache
mapping combines the best of direct and associative
cache mapping techniques. As with a direct mapped
cache, blocks of main memory data will still map into
as specific set, but they can now be in any N-cache block
frames within each set (fig. 5-12).

CACHE READ.— The two primary methods used
to read data from cache and main memory are as
follows:

Figure 5-12.—Example of set association mapping used in
cache memory.

5-16

l Look-through read —In look-through read, the
cache is checked first. If a miss occurs, the reference is
sent to main memory to be serviced. This is known as
a serial read policy.

l Look-aside read —A look-aside read presents
both cache and main memory with the reference
simultaneously. Since the cache will respond faster, if
a hit occurs, the request can be terminated before main
memory responds. This is known as a parallel read
policy.

CACHE REPLACEMENT POLICIES.— When
new data is read into the cache, a replacement policy
determines which block of old data should be replaced.
The objective of replacement policies is to retain data
that is likely to be used in the near future and discard
data that won’t be used immediately. The replacement
policies include the following:

. FIFO —The first block that was read into cache
is the first one to be discarded.

l LRU —The block that hasn’t been used in the
longest period of time is replaced by the new block.

Blocks are replaced randomly.l Random. —

. Optimum— This cache replacement algorithm is
psychic and has perfect knowledge of the future.
Optimum replacement is what the other three strive for,
with LRU coming the closest.

CACHE WRITE.— Since the cache contents area
duplicate copy of information in main memory, writing
(instructions to enter data) to the cache must eventually
be made to the same data in main memory. This is done
in two ways as follows:

l Write-through cache— Writing is made to the
corresponding data in both cache and main memory.

. Write-back cache— Main memory is not updated
until the cache page is returned to main memory.

READ-ONLY MEMORY (ROM)

Every computer comes with a set of software
instructions supplied by the manufacturer. This enables
the computer to perform its I/O operations. These
permanent instructions (routines) reside in a read-only
memory (ROM). ROM is often referred to as
firmware: software permanently contained in
hardware. The instructions are considered permanent
or nonvolatile, since they are not erased each time the
computer loses power or is turned off. The ROM

contains the program that defines its uniqueness
compared with all other types of computers.

The ROM is programmed at the time of
manufacture and cannot be altered. It is tailored to
system requirements. It cannot be altered except by
removing and replacing it—either a module or IC chip
on a board. The contents of the ROM are electrically
unalterable. Other variations of ROMs called PROMS
can be reprogrammed as required. This and other
variations are covered in further detail in chapter 6 on
memory.

In connection with the ROM, you will hear the term
boot procedure used. The ROM initiates the boot
procedure—a sequence of steps followed when you
turn on the power to the computer or initiate the boot
procedure. The steps required to successfully boot the
computer depend on the type of computer. Other terms
that have the same meaning as boot include boot up,
booting, or bootstrap. They all refer to the process of
loading the software. Consult your computer’s
technical or owner’s manual for the exact procedures
for your computer system. We use two types of ROMs
to discuss some of the programs associated with the
ROM: nondestructive readout (NDRO) memory and
basic input/output system (BIOS).

Nondestructive Readout (NDRO) Memory

A nondestructive readout (NDRO) memory is
usually associated with a militarized mainframe or
minicomputer. The NDRO is a small module that
occupies two or more slots. For mainframes, it is
located in the CPU module. For minicomputers, it is
located in the chassis that contains the CPU’s pcb’s.
The functions of an NDRO are controlled from the
computer’s controlling device: a maintenance console
or equivalent. The sizes of the NDRO addresses vary
with the type of computer and its requirements.
Selection of a particular word in the NDRO is via the
NDRO address select, line selector, and current switch
logic. AN NDRO consists of hardwired circuits to
create the bootstrap programs or a ROM or PROM.
Some of the programs contained on an NDRO include
the following:

l Two bootstrap programs— Used to load
programs from peripheral equipments into main
memory

. Autostart programs

5-17

l

l

l

l

l

l

Basic

A

Computer start programs—Used to start a
program from a controlling device, locally or
remote

Interrupt routines

Diagnostic programs—Load failure analysis,
memory test, interface test, and computer
interconnection system

Program development memory

User-specified programs

Inspect and change programs

InPut/Output System (BIOS)

basic input/output system (BIOS) is usually
associated with “a microcomputer. The BIOS performs
the same basic function that an NDRO does in larger
computers except for a few major differences. The
BIOS is located in the CPU/memory pcb. It is
contained on one or more IC chips on the pcb, and the
functions of the BIOS are initiated when the computer
is powered on. Among the tasks performed are
diagnostic testing, environmental inventory, and boot
procedure. Figure 5-13 is a basic diagram of installing
a BIOS along with the operating system into RAM of a
microcomputer.

DIAGNOSTIC TESTING.— Diagnostic testing
or Power-on Self Test (POST) is initiated when you
initially power up the micro. These tests generally do
the following:

l Test CPU registers and flags

Figure 5-13.—Basic diagram of installing a BIOS.

Compute and check a checksum for the ROM

Check the direct memory access (DMA)

Test the interrupt controller

Test the timer

Perform a checksum test on the BASIC
(programming language) ROMs

Test the video

Test the CRT interface lines

Test the memory

Test the keyboard

ENVIRONMENTAL INVENTORY.— This
portion of the BIOS includes, just as the name implies,
taking inventory of the presence or absence of key
items. It includes the following tasks:

l

l

l

Initialize installed adapters if necessary and
return to BIOS startup. Adapters include hard
disk controllers, enhanced graphics adapter
(EGA), and local-area network (LAN) adapters.

Check disk controllers for floppy and hard
drives.

Determine the number of printers and serial ports
attached.

BOOT PROCEDURE.— Once the testing and
inventory are complete, batch files are executed. These
are the files that have been written to execute the
sequence of instructions needed when the system is
powered up and the system configuration files are
loaded. The ROM chip program searches for the
operating system files on either the floppy drive diskette
and/or the hard disk depending on the system setup. As
soon as the operating system is located, it is loaded into
memory and control is turned over to the operating
system. To let you know the microcomputer is ready to
use, an opening message (a prompt) is displayed.

TOPIC 2—ARITHMETIC AND LOGIC
UNIT (ALU)

The arithmetic and logic unit (ALU), also called the
arithmetic section, is designed to perform the arithmetic
and logical operations for the CPU. The data required
to perform the arithmetic and logical calculations are
inputs from the designated CPU registers and operands.
The ALU relies on basic items to perform its operations.
We have discussed some of these basic items in previous

5-18

chapters and topics. They include the number
systems, data routing circuits (adders/subtractors),
timing, instructions, and operand/registers.

In this topic, we discuss the instructions, timing,
and operand/registers and how they apply to the ALU
and the ALU operations. Figure 5-14 shows a
representative block diagram of an ALU of a
microcomputer. Chapter 4 of this volume and NEETS
Module 13, Introduction to Number Systems and Logic
Circuits, provide a review of number systems,
adder/subtractor circuits, timing, instructions, and
operands/registers. Also refer to NEETS 13 for detailed
information of the types of number systems and
information basic to all number systems; their
identification, operations (addition and subtraction
including radix-minus-1 complement and
radix-minus-2 complement computations), and
conversion. They are discussed in more detail, and it
would benefit you to review them to gain a better
understanding of how they apply in the ALU
operations.

INSTRUCTIONS

The instructions tell the CPU which type of
mathematical or logical calculation the ALU will
perform. They will also tell the CPU the location of the
data on which the ALU will perform the calculations
and where to store the results. Results can be used
immediately or stored for use later. Special codes
within the instructions can also affect arithmetic or
logical operations. They can be used for branching or
setting flag registers.

Figure 5-14.—Representative block diagram of an ALU.

TIMING

Timing in the ALU is provided by the CPU’s timing
circuits. Larger computers have their own arithmetic
timing circuits independent of the CPU’s timing
circuits. In this case, arithmetic timing is initiated by a
command from the CPU’s main timing chain and the
length of the arithmetic timing chain is dependent upon
the specific instruction.

OPERANDS/REGISTERS

The registers and operands provide the computer
the sources of the data needed to perform the
calculations. They also provide the destination for
results. Computers can be designed to include the use
of whole-word, half-word, and quarter-word
operands and the use of single-length a n d
double-length word/operands to carry out the
arithmetic operations. Double-length memory words
or operands will be used for mathematical operations in
which the size of the result would be greater than the
length of either of the two registers used to provide
inputs to the ALU or the operands being input to the
ALU are larger than a single word. The sign bit in
double-length memory words or operands is the most
significant bit (msb). Flag registers of one to three bits
may be used by the ALU to indicate the status of the last
arithmetic or logical operation. The last arithmetic or
logical calculation used to set a flag register is often
followed by a branching operation. Some of the items
indicated by flag registers include the following:

● Equal to zero (= 0)

● Greater than (>)

● Less than (<)

. Positive sign (+)

● Negative sign (–)

● Carry or borrow

Q Overflow

Other items used in the ALU include selectors and
counters. The selectors are used to transfer the data
between the various registers (accumulators) used in the
ALU. Counters are used to keep track of shifts used in
the various arithmetic and logical calculations.

5-19

ALU OPERATIONS

ALU operations in the CPU include calculations of
integers and/or fractions. All the computations are
performed using the binary number system. ALU
operations also include signed arithmetic operations.
First we discuss how the binary equivalents of decimal
numbers are represented in fixed-point representation
(integers), then we discuss floating-point
representation (fractional). Fixed- and floating-point
operations are important for the computer. They make
the computer versatile when performing arithmetic and
logical types of ALU operations.

Fixed-Point Operations

Fixed-point arithmetic operations are performed on
integral or whole numbers where the binary point is
assumed to be to the right of the least significant bit
(bit 0). For example, if we have an 8-bit register, we
may express integer decimal numbers between 0 and 28

minus 1 (or 255), by converting the decimal number to
its binary equivalent. If we have a 16-bit register, we
can store integer decimal numbers between 0 and 216

minus 1 (or 65535). Because the binary point is fixed
and always to the right of the least significant digit,
fractions are not represented. The magnitude or
absolute value of the number is always represented by
2N minus 1 where N is the number of bits within the
register or memory cell where the number is being
stored.

In fixed-point operations, the computer can
perform calculations on signed numbers (positive and
negative). The most significant bit (msb) is used as a
sign bit. A zero (0) in the msb indicates a positive or
true form number, and a one (1) in the msb indicates a
negative or one’s complement/radix-minus-1 form
number.

When dealing with binary numbers, we can take
this one step further; we find the two’s complement or
radix-minus-2 of the number. It is important to
understand the concepts behind 1’s and 2’s
complement. It is the basis by which the computer
performs arithmetic and logical calculations. Now if
you want to accommodate an equal amount of positive
and negative numbers, a 16-bit register can contain
numbers from –32768 to +32767 or –215 to 215 minus
1. The reason they are not both 215 is because one
combination is taken up for the zero value. This is more
easily seen if we examine a 4-bit register. The
combinations are shown in table 5-2.

Table 5-2.—Binary and Decimal Values of a 4-Bit Register

That is, there are 23 or 2N combinations and one
combination is for the number zero. Negative numbers
are represented by their two’s complement and the most
significant bit (regardless of the word or operand size)
is the sign bit. Fixed-point operations can include
double-length arithmetic operations, where operands
contain 64 bits and bit 263 is the sign bit.

Floating-Point Operations

Floating-point operations are used to simplify the
addition, subtraction, multiplication, and division of
fractional numbers. They are used when dealing with
fractional numbers, such as 5.724 or a very large
number and signed fractional numbers. When
performing arithmetic operations involving fractions or
very large numbers, it is necessary to know the location
of the binary (radix) point and to properly align this
point before the arithmetic operation. For
floating-point operations, the location of the binary
point will depend on the format of the computer. All
numbers are placed in this format before the arithmetic
operation. The fractional portion of the number is
called the mantissa and the whole integer portion,
indicating the scaled factor or exponent, is called the
characteristic.

5-20

By rewriting the number in an exponent form, it is
often much easier for the computer to manipulate; but,
as noted, we give up the digits that were rounded. As a
result, some resolution (the number of digits in the
fraction) is usually lost. For instance, the number
325786195 could be expressed as 3.26 × 108 or
.32579 × 109. Still, this concept is useful. The
computer, however, is limited by the hardware in the
number of bits its registers and memory cells can
accommodate.

FLOATING-POINT FORMAT.— The format
for the characteristic and mantissa during floating-point
operations will vary with the register size. However,
the binary (radix) point is usually located between the
sign bit and the msb of the mantissa. Typically,

floating-point numbers use a 32-bit word size. Let’s
illustrate a couple of examples—one with a fractional
number and another with a very large number. Refer to
figure 5-15, frames A and B, during our discussion.

We use one’s complement in our examples with
32-bit size words. We’ll use the number 6.543218 as
our example of a fractional number (fig. 5-15, frame A).
Our fractional number will require two 32-bit words. In
this case, notice the integral characteristic can have a
maximum positive or negative value of 215 minus 1 and
comprises the least significant 16 bits of the word. Bit
15 contains the one’s complement sign, which is
extended through the most significant 16 bits of the
word. The mantissa is the fractional part of the number
and is processed as a 32-bit number including the sign.

Figure 5-15.—Floating-point numbers: A. Fractional number; B. Very large number.

5-21

The second example is a very large number
76655433222111118; refer to figure 5-15, frame B.
After the number has been put in exponent form, it, too,
will require two 32-bit words.

FLOATING-POINT PRECISION.— Floating-
point formats include the use of single- and
double-precision (refer to figure 5-16, frames A and B).
The names single- and double-precision imply their
usefulness: precision. Notice the double-precision
floating-point format, two 32-bit words where the
characteristic is small compared to the mantissa in
which precision accuracy is required.

FLOATING-POINT ROUND.— Floating-point
operations also include rounding instructions, which
are used for rounding the mantissa’s results; rounding
up when the mantissa is equal to or greater than one-half
of one and rounding down when it less than one-half of
one. Rounding can also be applied to double-length

results of mantissas. If the sign bit is destroyed
(overflowed into) during mantissa rounding or division,
the computer will make corrections to the mantissa or
quotient.

FLOATING-POINT INTERRUPTS.— Float-
ing-point interrupts can be generated when certain
improper conditions are detected. The interrupts
inform the program of these conditions and permit
either notation or corrective procedures. Some
conditions include:

l Underflow (negative excess) or overflow (posi-
tive excess)—When a floating-point char-
acter exceeds an absolute value of 2N-1 where
N is the msb.

l Divisor —Equals zero in a divide instruction

The control section will be notified and an interrupt
will be generated.

Figure 5-16.—Floating-point numbers: A. Single precision; B. Double-precision.

5-22

Operation Types

From the simplest microprocessor (8-bit) to a large
mainframe with an embedded microprocessor, the types
of ALU operations range from basic add and subtract
operations to sophisticated trigonometric operations
and separate coprocessor and math pacs, which
operate independent of the ALU. The types of
instructions most ALUs can perform can be divided into
two categories: arithmetic operations and logical
operations. The ALU uses the logical products of the
logic gates to perform the arithmetic and logical
instructions. Depending on the sophistication of the
computer, the logic gates are arranged to perform the
instructions included in the computer’s set of
instructions.

Computers can be designed to have an adder to
perform its adding and subtracting or a subtracter to
perform its adding and subtracting. Or they can have a
combined adder/subtracter system. Because a
computer can really only add or subtract, the add and
subtract capabilities allow the computer to perform the
more complicated arithmetic operations: multiply,
division, and square root functions. Addition and
subtraction functions are embedded in division, square
root, and the more complicated arithmetic functions,
such as trigonometric and hyperbolic, to name a couple.

The computer can be designed where a single
instruction will accomplish the results or a series of
instructions can be written to produce the results. The
only drawback to a series of instruction is they consume
more time to accomplish the results. The multiply,
divide, square root, and trigonometric instructions are
examples.

Computers can multiply by repetitive adding or
they can use a series of left shift instructions both using
a compare instruction, which may be how a computer
with a dedicated multiply function accomplishes the
function anyway. The same principle can be applied to
the divide and square root functions. A divide can use
repetitive subtractions or a series of right shifts with a
comparison function. A square root would use a
combination of additions/subtractions and comparisons
for the multiplying and dividing necessary to
accomplish a square root function. A trigonometric
function using separate instructions would use logical
instructions to accomplish the same results that a single
trigonometric instruction would accomplish. ALU
operations include signed operations.

Depending on the sophistication of the computer,
ALU functions can include the following functions:

l Arithmetic —Add, subtract, shift, multiply,
divide, negation, absolute value. (The more
sophisticated ALUs can perform square root,
trigonometric, hyperbolic, and binary angular
movement or motion (B AM) functions.)

l Logical —AND, OR, NOT (complement), and
EXCLUSIVE OR (compare).

Also depending on the design, numeric data
coprocessor and math pacs are used in some computers
in addition to the normal arithmetic instructions
available. They execute the arithmetic instructions the
CPU’s ALU cannot, and they are still controlled by the
CPU’s program control. These additional logic circuits
can be used to amplify the capabilities of the ALU and
arithmetic section in general. Remember, the ALU is
part of a CPU module or a microprocessor chip on a
printed circuit board. The numeric data coprocessor
and math pac are separate modules or chips.

NUMERIC DATA COPROCESSOR.— The
numeric data coprocessor is a special-purpose
programmable microprocessor designed to perform up
to 68 additional arithmetic, trigonometric, exponential,
and logarithmic instructions. The coprocessor
performs numeric applications up to 100 times faster
than the CPU alone and provides handling of the
following data types: 16-,32-, and 64-bit integers; 32-,
64-, and 80-bit floating-point real numbers; and up to
18-digit binary coded decimal (BCD) operands.

The numeric data coprocessor operates in parallel
with and independent of the CPU using the same data,
address, and control buses as the CPU. In effect, the
coprocessor executes those arithmetic instructions that
the CPU’s ALU cannot. The CPU is held in a wait
mode, while the coprocessor is performing an
operation. The CPU still controls overall program
execution, while the coprocessor recognizes and
executes only its own numeric operations.

MATH PAC.— Math pac is a module used as a
hardware option for some militarized minicomputers.
The math pac module provides the hardware capability
to perform square root, trigonometric and hyperbolic
functions; floating-point math; double-precision
multiply and divide instructions; and algebraic left and
right quadruple shifts.

TOPIC 3—COMPUTER INTERNAL
BUSES

To transfer information internally, computers use
buses. Buses are groups of conductors that connect the

5-23

functional areas to one another. This is how the
functional areas communicate with each other. A bus
is a parallel data communication path over which
information is transferred a byte or word at a time. The
buses contain logic that the CPU controls. The items
controlled are the transfer of data, instructions, and
commands between the functional areas of the
computer: CPU, memory, and I/O The type of
information is generally similar on all computers; only
the names or terminology of the bus types differs. The
name of the bus or its operation usually implies the type
of signal it carries or method of operation.

The direction of signal flow for the different buses
is indicated on figures in the computer’s technical
manuals. The direction may be unidirectional or
bidirectional depending on the type of bus and type of
computer. Consult the computer’s technical manual for
details. After becoming familiar with the basic
functions and operations of buses, you’ll see that
regardless of the names, their basic concepts are
consistent throughout the computer. They provide
avenues for information to be exchanged inside the
computer.

BUS TYPES

The preferred method for data/information transfer
between system components is by a common data bus.
Where point-to-point data transfer is required, the
digital format is the preferred method. General
Requirements for Electronic Equipment Specifications,
MIL-STD-2036 series, provides a list of the industry
accepted standard internal data buses. They include
the standard and the interface as follows:

IEEE 696—IEEE Standard 696 Interface
Devices, S-100

IEEE 896.l—IEEE Standard Backplane Bus
Specification for Multiprocessor Architecture,
Future Bus

I E E E 9 6 1 — S t a n d a r d f o r a n 8 - b i t
Microcomputer Bus System, STD Bus

IEEE 1014—Standard for a Versatile Backplane
Bus, VMEbus

IEEE 1196—Standard for a Simple 32-Bit
Backplane Bus, NuBus

IEEE 1296—Standard for a High-Performance
Synchronous 32-Bit Bus, Multibus II

All computers use three types of basic buses. The
name of the bus is generally determined by the type of
signal it is carrying or the method of operation. We
group the buses into three areas as you see them in their
most common uses. They are as follows:

Control (also called timing and control bus),
address, and data (also called a memory bus)
buses

Instruction (I), Operand (O), Input/Output
Memory (I/O MEM) or Input/Output Controller
(IOC), and Computer Interconnection System
(CIS)

Time multiplexed bus

Control Bus

The control bus is used by the CPU to direct and
monitor the actions of the other functional areas of the
computer. It is used to transmit a variety of individual
signals (read, write, interrupt, acknowledge, and so
forth) necessary to control and coordinate the
operations of the computer. The individual signals
transmitted over the control bus and their functions are
covered in the appropriate functional area description.

Address Bus

The address bus consists of all the signals necessary
to define any of the possible memory address locations
within the computer, or for modular memories any of
the possible memory address locations within a module.
An address is defined as a label, symbol, or other set of
characters used to designate a location or register where
information is stored. Before data or instructions can
be written into or read from memory by the CPU or I/O
sections, an address must be transmitted to memory
over the address bus.

Data Bus

The bidirectional data bus, sometimes called the
memory bus, handles the transfer of all data and
instructions between functional areas of the computer.
The bidirectional data bus can only transmit in one
direction at a time. The data bus is used to transfer
instructions from memory to the CPU for execution. It
carries data (operands) to and from the CPU and
memory as required by instruction translation. The data
bus is also used to transfer data between memory and
the I/O section during input/output operations. The
information on the data bus is either written into

5-24

memory at the address defined by the address bus or
consists of data read from the memory address specified
by the address bus.

Figure 5-17 is an example of a computer’s bus
system; control, address, and data buses.

Instruction (I) Bus

The instruction (I) bus allows communication
between the CPU and memory. It carries to the CPU
the program instruction words to be operated on by the
CPU from memory or returns instructions to memory.
The I bus is controlled by the CPU. It is capable of
sending or receiving data while the operand(O) bus is
receiving or sending data at the same time, but only in
one direction at a time.

Operand (O) Bus

The operand (O) bus allows communication
between the CPU and memory or the CPU and an I/O
Controller (IOC). The CPU controls the operation in
both cases. The O bus is capable of sending or receiving
data, while the I bus is receiving or sending data at the
same time, but only in one direction at a time. The
direction of the data depends on whether the CPU is
reading data from memory or data is being written back
into memory.

I/O MEM Bus or Input/Output Controller
(IOC) BUS

The I/O memory bus allows communication
between an I/O controller (IOC) and memory. It is

Figure 5-17.—Example of a computer’s bus system; control,
address, and data buses.

controlled by the IOC. To respond to the CPU, the I/O
MEM bus must use the O bus.

Figure 5-18 is an illustration of communications
between a CPU, memory, and an IOC without a
computer interconnection system. Pay close attention
to the direction of signal flow and which buses allow
communication between functional areas.

Computer Interconnection System

The Computer Interconnection System (CIS)
provides the complete functional replication of the
computer intraconnection among CPUs, IOCs, and
memories in separate computers. This allows the
internal buses to be extended beyond their own
enclosure. The CIS consists of two independent halves:
the requestor extension interface (REI) and the direct
memory interface (DMI).

REQUESTOR EXTENSION INTERFACE
(REI).— The requestor extension interface (REI) is a
bus extender. It extends the bus up to 15 other computer
cabinets providing an interconnected system of
memory modules, CPUs, and IOCs. The REI takes the
requests from the requestor ports and goes through a
priority network to determine the order in which it is to
respond to the requestors. Once the REI has responded
to a request, it puts the address onto the output bus,

Figure 5-18.—Bus system between a CPU, memory, and IOC
without CIS.

5-25

checks parity, and examines a code to determine the
correct sequence. After the sequence is established, the
REI broadcasts the requests and the address to all DMIs
connected to it. The signals on the REI external
interface are expanded to guarantee capture at the DMI
operating synchronously to the REI, which can be
located up to 500 cable-feet away. Once the REI makes
a request, it can send write data if it is performing a write
operation or wait for a response and pass it to the
requestor. The REI responds to the requestor just as
memory does, including faults and aborts (terminates a
process before it is completed).

DIRECT MEMORY INTERFACE (DMI)
BUS.— The Direct memory interface is a responder or
slave on the REI bus. The DMI bus is used in some
computers that use an I, O, and IOC bus. The DMI bus
is used to send requests from other enclosures
(computers) to the module (CPU or IOC) requested. It
acts as the requestor and makes requests to the CPU.
When it requests an IOC, it uses IOC read and write
requests. When it requests memory, it uses operand
read or write, instruction read, or replace.

Time Multiplexed Bus

Another variation of the address and data bus is the
time multiplexed bus. This single bus transmits both
addresses and data using a four cycle clock (t1, t2, t3,
and t4). The address is transmitted during the t1 clock
cycle, the direction of data movement is selected during
t2, and the data is transmitted during t3 and t4.

BUS OPERATIONS

The bus control function is performed by a bus
interface unit or logic circuitry similar to it. Control of
a bus line and the proper protocol of requesting a bus
depends on the design of the computer. In computers
with no IOC, the CPU has control of the bus lines. In
computers with an IOC, the CPU will control the
instruction and operand buses and the IOC will control
the memory buses. Bus control is necessary to handle
the large number of bus transactions that take place in
a very short period of time in the computer. There are
basically two factors that must be taken into
consideration in bus communications: transfer
priority and source/destination of the data being
transferred.

Bus transfers are done on a priority basis. The
priorities of bus transfers are determined by the design
of the computer’s firmware. What part makes the
request is also determined by the design of the

computer’s firmware; requests may be made by a CPU,
an IOC, and/or a DMI. Examples of priorities that a
computer must deal with include the following (these
examples are not in any type of priority and do not cover
the full range of priorities you may encounter):

Transfers from memory to the CPU, these
transfers move instructions and operands to the
CPU for execution and modification

Transfers from the CPU to memory

Transfers by the I/O in and out of memory

The specific request will identify the source and the
destination of the data. The computer’s controlling bus
continually and repeatedly checks the bus signal lines
for requests. When it receives a request, it provides the
control signals needed to initiate the transfer. Since
most transfers deal with memory, each transfer consists
of an address exchange and a separate data exchange.
The data will either parallel the address as in a write
operation or move in the opposite direction after the
data has been read from the memory word identified by
the address.

In some computers, the bus systems use holding
registers in both the source and destination sections to
prevent data loss and to help coordinate the data
exchange. In the source logic, the data is placed in a
holding register until it is accepted by the destination
logic. The outputs of the holding register feed the bus
circuitry. In the destination logic, the bus inputs to a
holding register. After accepting the data, the
destination logic can then move the data from the
holding register to other parts of the logic for
processing.

A variety of command signal names are used to
coordinate the exchange of data on the buses by both
the source and the destination logic. The source logic
generates a ready or signal equivalent when the data is
in the holding register and on the bus. The destination
logic sends an accept or equivalent signal when it has
sensed the ready signal and captured the data on the bus
in its holding register or other logic circuits.

MICROCOMPUTER ARCHITECTURE
AND BUSES

The microcomputer has uses four main types of
buses. These are the

l Processor bus

l Address bus

5-26

. Memory bus

l I/O bus

The I/O bus has historically been the slowest of all
buses, and the main focus when computer design
engineers try to improve bus speeds.

Processor Bus

The processor bus is communications path between
the CPU and the main bus. It is also used for
communications between the CPU and the processor
support chipset. The processor support chipset includes
chips such as an external memory cache and the bus
controller chip found on some microcomputers. The
size of the processor bus matches the size of the data
words used by CPU. For example, the 80486DX chip
uses 32-bit words; therefore the processor bus has 32
data lines, 32 address lines, and the control lines. The
Pentium processors have 64-bit words and use 32-bit
addresses. Processor buses can have a maximum data
transfer rate of the motherboard clock.

Memory Bus

The memory bus transfers data between the RAM
and the CPU. This bus can be the processor bus or will
be implemented by a dedicated chipset that controls the
memory bus. In most computers that have a
motherboard clock that is faster then 16MHz, a special
memory controller chipset will control the memory bus.

Address Bus

The address bus transfers the next memory or I/O
address to be used in the next data transfer. The address
bus in 486 and Pentium systems is 32 bits wide.

I/O Buses

To thoroughly understand the I/O buses used in
modern microcomputer systems, an understanding of
the development and evolution of bus systems is
required. The microcomputer’s architecture is directly
related to the type of buses in the computer. Originally,
microcomputers used a bus system called the S-100 bus.
Using this system, any board could be plugged into any
open slot. The S-100 bus has 62 lines, each connect to
each of the 62-pin connectors. This system dedicated
eight lines for the eight data bits used in the Intel 8088
microprocessor. Twenty lines are used for memory
addressing. The same 20 lines are also used to address
I/O devices. A control line determines whether the data

5-27

on these 20 lines will be a memory address or an I/O
address. There are also several control lines and power
distribution lines.

The S-100 bus also provided four lines to designate
channels for Direct Memory Accessing (DMA). A
DMA channel allows a device, such as the hard drive,
to transfer data directly into RAM, vice transferring
data to the CPU and then having the CPU transfer it to
the RAM. The DMA channel number identifies which
device is requesting and transferring data on the data
bus.

Buses also need to be clocked to properly transfer
data. The early microcomputer buses were designed to
run at the speed of the microprocessor that was installed
on the board. The 4.7 MHZ 8088 microprocessor clock
was also used to clock the bus. The 7.16 MHZ
microprocessor clocked the bus at the same rate. The
ISA standard set the bus clock speed at 8 MHZ. To
maintain compatibility with the older controller boards,
this speed is still common in many computers today.
This speed is fine when getting input from a mouse or
a keyboard, even for most disk drives. The biggest
problem with bus speeds has occurred because of the
increase in video resolution, the development of video
capture boards and some network interfaces.

INDUSTRY STANDARD ARCHITECTURE
(ISA).— As the microcomputer evolved, the eight data
lines and 20 address lines became insufficient to handle
the increased data capacity of the 16-bit processor. This
led to the development of the Industry Standard
Architecture (ISA). To be compatible with the boards
used in eight-bit computers, an additional 36-wire
connector was added to the circuit boards and the bus.
This added eight more data lines, four more address
lines, four more DMA channels, and five more IRQ
channels.

LOCAL BUSES.— A local bus is a bus that is a
dedicated path between the processor and a specific
board. There are several local buses built into various
types of computers to increase the speed of data
transfers. Local buses for expanded memory and video
boards are the most common. Some high-end
computers also provide a local bus for the hard drive.

The VESA Local Bus is one of the more popular
buses and was developed to increase the speed of data
transfer between memory and the video processing
board (video graphics adapter). VESA stands for Video
Electronics Standards Association. The VESA Local
Bus is a direct bus that connects the video processor

with the processor bus. The VESA Local Bus operates
at the speed of the video processor.

Several other bus systems have been developed,
many of which have not found widespread acceptance
in the PC world. Each of these has introduced some
technology that is common in the modem bus systems.

MICROCHANNEL ARCHITECTURE
(MCA).— The MicroChannel Architecture (MCA) bus
was developed by IBM in 1987 and increased the bus
speed to 10 MHZ. The MCA Bus also introduced the
ability to configure the boards IRQ and DMA channels
through a software configuration program. MCA was
the first system to use bus mastering. Bus mastering is
a system that allows an intelligent controller board to
take control of the bus system for a specified period of
time. This allows operations to be completed quickly.
Bus mastering differs from DMA in that DMA allows
for direct transfer from a peripheral controller to RAM,
Bus mastering allows for direct transfers between
controllers. An example of bus mastering is the ability
of a hard drive to transfer graphics directly to the
graphics driver, bypassing the CPU and RAM.

The major disadvantage of MCA was that it is not
compatible with the old ISA standard. Therefore, if you
have an MCA machine, the old ISA controller boards
will not work.

EXTENDED INDUSTRY STANDARD
ARCHITECTURE.— To compete with MCA, The
Extended Industry Standard Architecture was (EISA)
developed. The EISA Bus included the following
features:

32-bit data path

64K of I/O address

Capability to address up to 4 giga-bytes of
memory

Software configuration of boards

Bus mastering

Unfortunately, the EISA Bus still operates with an 8
MHZ clock, and did not add any additional DMA or
interrupt channels.

PERIPHERAL COMPONENT INTERCON-
NECT (PCI).— The Peripheral Component
Interconnect (PCI) system was designed to increase I/O
bus speeds while still maintaining compatibility with
previous ISA and EISA boards. A PCI computer has
two separate banks of expansion slots, one bank for PCI
boards and one bank for the older ISA/EISA boards.

The PCI bus uses a “bridge circuit” to isolate the
processor bus from the main I/O bus. This bridge
circuit is designed so that I/O functions can run
independently from the CPU.

The PCI bus is a 64-bit data bus, but can also
support 32-bit computers. This makes the PCI bus
useful in both Pentium and 486 systems. The PCI bus
can operate a speed up 33 MHZ and also supports bus
mastering. Finally, the PCI bus supports the
Plug-n-Play standard for software configuration of
peripheral boards.

SUMMARY—CENTRAL PROCESSING
UNITS AND BUSES

This chapter has introduced you to central
processing units (CPUs) and buses. The following
information summarizes important points you should
have learned:

CENTRAL PROCESSING UNITS— All the
computational operations (logical and arithmetic) and
operational decisions are made in the CPU. The CPU
controls all computer operations. The CPU has a
control section and an arithmetic logic unit (ALU).

CONTROL SECTION— The control section
directs the sequence of CPU operations, interprets the
instructions, and provides the timing and control signals
to carry out the instructions.

TIMING— Thing in a computer regulates the
flow of signals that control the operation of the
computer. Computer operations rely on both
synchronous and asynchronous operations. Timing
circuits are used throughout the computer.

INSTRUCTION AND CONTROL— The
instruction execution and control portion of the control
section includes the combinational and sequential
circuits that make up the decision-making and the
memory-type functions. The general process of
execution of a machine instruction is fetch the
instruction, update the program counter or equivalent,
translate the instruction, and execute the instruction.

INTERRUPTS— Interrupts are a method of
diverting the attention of the computer from whatever
process or program it is performing to handle the special
condition or event that caused the interrupt signal.
Interrupts allow the computer to respond to high
priority demands and still be able to perform normal or
lower priority processing. An interrupt is defined as a
break in the normal flow of operation of a computer
caused by an interrupt signal. The break occurs in

5-28

such a way that the operation can be resumed from the
point of the break at a later time with exactly the same
conditions prevailing. CPUs follow a specific sequence
of events when processing an interrupt. Interrupt
processing has priority over normal program execution.

CONTROL MEMORY— Control memory
consists of addressable storage registers. It is used as a
temporary storage. Access to control memory data
requires less time than access to main memory. This
speeds up CPU operation by reducing the number of
memory references for data storage and retrieval.

CACHE MEMORY— Cache memory is a small,
high-speed RAM buffer located between the CPU and
main memory and used to hold a copy of the instructions
or data currently being used by the CPU. It is used to
speed up the flow of instructions and data into the CPU
from main memory.

READ-ONLY MEMORY— Every computer is
supplied with a set of software instructions to enable the
computer to perform its I/O operations. These
permanent instructions (routines) reside in a read-only
memory (ROM). ROM is often referred to as
firmware: software permanently contained in
hardware. The instructions are considered permanent
or nonvolatile, since they are not erased each time the
computer loses power or is turned off. The ROM is
tailored to system requirements and initiates the boot
procedure —the steps followed when you turn on
computer power.

ARITHMETIC LOGIC UNIT— The arithmetic
logic unit (ALU) implements arithmetic and/or logical
operations required by the instructions. The
instructions tell the CPU which type of mathematical or
logical calculation the ALU is to carry out. The

registers and operands provide the computer the sources
of the data needed to perform the calculations. Timing
in the ALU is provided by the CPU’s timing circuits.

ALU OPERATIONS— ALUs can perform
arithmetic and logical operations. An ALU can be
designed to perform arithmetic operations in
fixed-point representation (integers) and floating-point
representation (fractional). The types of arithmetic
operations range from add and subtract operations to
sophisticated trigonometric operations. Some
computers have a separate numeric data coprocessor or
math pacs to perform arithmetic functions independent
of the ALU.

INTERNAL BUSES— Buses transfer information
internally in computers. A bus is a parallel data
communication path over which information is
transferred a byte or word at a time. The direction of
signal flow may be unidirectional or bidirectional.

BUS OPERATIONS— The bus control function is
performed by a bus interface unit or logic circuitry
similar to it. Control of a bus line and the proper
protocol of requesting a bus depend on the design of the
computer. Bus transfers are done on a priority basis.
Basically two factors must be taken into consideration
in bus communications: transfer priority and
source/destination of the data being transferred.

By studying this chapter, you should have learned
how the CPU works through its control section and its
arithmetic logic unit. You also should have learned how
buses are used to transfer instructions, data, and
information throughout a computer. These concepts are
important to understanding how to troubleshoot and
diagnose malfunctions and repair or replace CPU parts.

5-29

